MR17 Code No.: 70506

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, MAY-2019

Subject: Design and Analysis of Algorithms

Branch: CSE

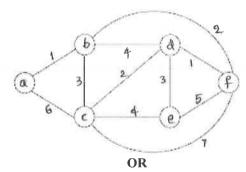
PART - A

Time: 3 hours

Max. Marks: 60

Answer ALL questions of the following

5x2Marks=10 Marks


- 1. Differentiate between priori & posterior analysis.
- 2. Define binary search worst case and best case analysis.
- 3. State the principle of optimality.
- 4. Define chromatic number of a graph.
- 5. Define non polynomial algorithms.

PART-B

Answer ALL questions of the following

5x10 Marks= 50Marks

- 1. a) Write General Plan for Analyzing Time Efficiency of Recursive algorithms.
 - b) Solve the following recurrence relation. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for $n = 2^k$)
- 2. a) Explain weighting and collapsing rules through algorithms.
 - b) How to determine Bi-connected components? Explain with an algorithm.
- 3. a) Search the element 20 in the given data set using binary search.7,9,20,54,82,101,112.
 - b) Find the minimum cost spanning tree for the following graph using kruskals algorithm.

- 4. a) Interpret the concept of Quick Sort with an example
 - b) Discuss merge sort algorithm using divide and conquer method
- 5. a) Explain optimal binary search tree.
 - b) List the differences between BST and OBST

- 6. a) Explain Matrix chain multiplication with an example.
 - b) Find an optimal solution for the following knapsack instance using dynamic programming: n=6, m=165, profits and weights are P = W = (100, 50, 20, 10, 7, 3).
- 7. a) Explain with the example how to find a Hamiltonian cycle.
 - b) Explain how branch and bound technique is used to solve knapsack problem.

- 8. a) Illustrate and generate a state space tree for m-coloring using suitable graph when n=3 and m=3.
 - b) Explain how the traveling sales person problem is solved using LC Branch and Bound
- 9. a) Write the differences between NP complete and NP hard problems.
 - b) Explain directed Hamiltonian cycle with example.

- 10. a) Differentiate between class P and class NP problem.
 - b) Distinguish between preemptive and non preemptive scheduling.

MR17

Code No.: 70505

Time: 3 hours

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, MAY-2019

Subject: Object Oriented Programming through Java

Branch: CSE

Max. Marks: 60

PART - A

Answer ALL questions of the following

5x2Marks=10 Marks

- 1. Why java is Architectural Neutral?
- 2. What is String Buffer? Write its significance in java programming.
- 3. What is the necessity of using sub packages?
- 4. What is an event? List various event listeners.
- 5. What is JApplet?

PART-B

Answer ALL questions of the following

5x10 Marks= 50Marks

- 1. a) Explain about Polymorphism with suitable example?
 - b) Describe the java buzzwords?

OR

2. a) Write a program to print fibonacci series using java.

[6M]

b) Write short notes on Scope and life time of a variable in Java

[4M]

- 3. a) What are the uses of *this* keyword? Give an example.
 - b) Define abstract class and abstract method with an example for each?

OR

- 4. Explain in detail about the access modifiers in java with suitable examples.
- 5. a) How to create user defined exception in java?

[6M]

b) What is the purpose of finally block in java?

[4M]

. .

6. a) Write a java program to create a bank application using interface.

[6M]

b) Differentiate checked and unchecked exceptions in Java.

- [4M]
- 7. Explain in detail about event delegation model with suitable example program

OR

- 8. a) Define AWT. Explain about AWT class hierarchy.
 - b) What is use of Thread Group class in java?
- 9. a) Differentiate an Applet and an application in java.

[4M]

b) Write a java program to set background and foreground colors using Frame class.

[6M]

OF

10. Write a java program to design a calculator using swings to perform basic arithmetic operations.

Code No.: 70450

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, MAY-2019

Subject: Digital Logic Design

Branch: CSE

Time: 3 hours

Max. Marks: 60

PART - A

Answer **ALL** questions of the following

5x2Marks=10 Marks

- 1. What is meant by parity bit?
- 2. Prove that x+x=x
- 3. Minimize the Boolean Expression xy'+y'z'+xy
- 4. Define the terms in connection with a FF.
- a. Flip-flop
- b. Race around condition

5. Write about D Latch.

PART-B

Answer ALL questions of the following

5x10 Marks= 50Marks

- 1. a) Convert the following numbers
 - i) (41.6875)₁₀ to Hexadecimal number
 - ii) (11001101.0101₁₂ to base-8 and base-4
 - b) Subtract (111001₁₂ from (101011)₂ using 1's complement?

- 2. Perform the subtraction for following using 10's complement
 - i) $(52532)_{10} (32500)_{10}$
- ii) $(32945)_{10} (56784)_{10}$
- 3. a) Obtain the dual of the following Boolean Expressions
 - i) AB'C+AB'D+AB'
- ii) A'B'C'+ABC'+A'B'C'D
- b) Obtain the truth table for the function F = xy+xy'+y'z and design the circuit

4. Obtain the simplified expression in SOP for the following Boolean functions using K-map

a)
$$f(w,x,y,z) = \sum (1,3,7,11,15) + \sum d(0,2,5)$$

a)
$$f(w,x,y,z) = \sum (1,3,7,11,15) + \sum d(0,2,5)$$
 b) $f(A,B,C,D) = ABD + \overline{ACD} + \overline{AB} + \overline{ACD} + \overline{AB}D$

5. Implement the following minterms with PLA circuit diagram?

$$F_1(A,B,C) = \Sigma (3,5,6,7)$$

$$F_2(A,B,C) = \Sigma (0,2,4,7)$$

- 6. Implement the Boolean function using 8:1multiplexer F(A,B,C,D)=A'BD'+ACD+B'CD+A'C'D
- 7. Derive the characteristic equation for J K Flip flop and explain the toggling Condition in Flip Flop?

- 8. Describe the analysis procedure of clocked sequential circuit.
- 9. Explain flow table and Race condition in Asynchronous sequential logic

10. Explain non-critical race conditions with an example

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD)
Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, MAY-2019

Subject: Advanced Calculus

Branch: Common to CE, ME, EEE, ECE, CSE & IT

Time: 3 hours

Max. Marks: 60

PART - A

Answer ALL questions of the following

5x2Marks=10 Marks

- 1. Solve pq + qx = y
- 2. State Stoke's theorem.
- 3. $If \emptyset(x, y, z) = 3x^2y y^2z^2$, find $\nabla \emptyset$ at the point (1,-2,-1).
- 4. Evaluate $\int_{0}^{\frac{\pi}{2}\pi} \cos(x+y) dx dy$
- 5. Verify Cauchy's mean value theorem for $f(x) = \sin x$ and $g(x) = \cos x$ on $\left[0, \frac{\pi}{2}\right]$.

PART-B

Answer ALL questions of the following

5x10 Marks=50Marks

1. a) Using mean value theorem, for 0 < a < b prove that $1 - \frac{a}{b} < \log\left(\frac{b}{a}\right) < \frac{b}{a} - 1$ and hence Deduce

that
$$\frac{1}{6} < \log\left(\frac{6}{5}\right) < \frac{1}{5}$$

b) Expand $e^{x \sin x}$ in powers of x

OR

- 2. a) If a < b, prove that $\frac{b-a}{1+b^2} < \tan^{-1}b \tan^{-1}a < \frac{b-a}{1+a^2}$ using Lagrange's mean value theorem and hence deduce $\frac{5\pi+4}{20} < \tan^{-1}2 < \frac{\pi+2}{4}$.
 - · b) Verify if $u = \frac{x-y}{x+y}$, $u = \frac{xy}{(x+y)^2}$ are functionally dependent and if so, find the relation between them.
- 3. a) Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dz dy dx$.
 - b) Using cylindrical co-ordinates find the volume of the cylinder with base radius a and height h.

OR

4. Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dx dy$

- 5. a) If \overrightarrow{a} is a differentiable function and ϕ is a differentiable scalar function then prove that $\operatorname{div}\left(\overrightarrow{\phi}\overrightarrow{a}\right) = \left(\operatorname{grad}\phi\right) \overrightarrow{a} + \phi \operatorname{div}\overrightarrow{a}$
 - b) Calculate the angle between the normal's to the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3)

- 6. a) Prove that $div(r^n\vec{r}) = (n+3)r^n, \vec{r} = xi + yj + zk$ [6M] b) Find $curl(\vec{f})$, where $\vec{f} = grad(x^3 + y^3 + z^3 - 3xyz)$ [4M]
- 7. a) Find the work done in moving a particle in the force field $\vec{f} = 3x^2 \vec{i} + (2xz y)\vec{j} + z\vec{k}$ along the straight line from (0,0,0) to (2,1,3)
 - b) If $\vec{f} = (2x^2 3z) \vec{i} 2xy \vec{j} 4x \vec{k}$ then evaluate $\int \nabla \cdot \vec{f} dv$ where V is the closed region

bounded by x = 0, y = 0, z = 0, 2x+2y+z = 4

- bounded by x = 0, y = 0, z = 0, 2x + 2y + z = 48. Verify stoke's theorem for $\vec{f} = (x^2 + y^2)\vec{i} 2xy\vec{j}$ taken round the rectangle bounded by the lines $x = \pm a$, y = 0, y = b
- 9. a) Form a partial differential equation by eliminating the arbitrary constants a, b, c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1$
 - b) Solve $x^2(z-y)p + y^2(x-z)q = z^2(y-x)$

OR

- 10. a) Form the partial differential equation by eliminating arbitrary function f from $f(x^2 + y^2, x^2 - z^2) = 0$
 - b) Solve the P.D.E px + qy = pq by Charpit's method.

MR17 Code No.: 70507

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, MAY-2019

Subject: Mathematical Foundation for Computer Science

Branch: Common to CSE & IT

Time: 3 hours

Max. Marks: 60

PART - A

Answer ALL questions of the following

5x2Marks=10 Marks

- 1. Define Tautology. Explain with an example.
- 2. Define Relation with an example.
- 3. What is Monoid? Give an example
- 4. Find the coefficient of x^9 in $(2-x)^{19}$?
- 5. Find the generating function of the sequence $\{1, 2, 3, \ldots\}$.

PART-B

Answer ALL questions of the following

5x10 Marks= 50Marks

1. Find the DNF and CNF of the Formula $1 \text{ (PVQ)} \leftrightarrow \text{(P} \land \text{Q)}$

- 2. a) Show that formula $QV(P \land IQ)V(IP \land IQ)$ is a tautology.
 - b) Find the formulas in Disjunctive Normal Form equivalent to the following well formed $(\neg R) \rightarrow (((P \lor Q) \rightarrow R) \rightarrow \neg Q)$
- 3. a) Let $A = \{1, 2, 3, 4\}$ and R be the relation on A defined by $R = \{(1,1), (3,3), (1,3), (2,3), (3,2), (3,2), (3,2), (3,3)$ (4,2)}. Determine the transitive closure of R.
 - b)Prove that the relation $R=\{(x, y)|x-y \text{ is divisible by } m\}$ over the positive integers is an equivalence relation.

OR

- 4. a) Prove that the following premises are inconsistent: $P \rightarrow (Q \rightarrow R)$, $S \rightarrow (Q \land R)$, $P \land S$.
 - b) Draw the Hasse diagram for the divisibility relation on the set $A = \{2, 3, 6, 12, 24, 36\}$.
- 5. a) Show that the mapping f: $N \rightarrow N$ defined by $f(n)=n^2+n+1$ is one-one but not onto.
 - b) Explain about semigroup homomorphism and isomorphism

- 6. a) Let $A = \{1, 2, 3, 4\}$ and a mapping $f: A \rightarrow A$ be given by $f = \{(1,2), (2,3), (3,4), (4,1)\}$. Find the composite functions f², f³ and f⁴.
 - b) Explain the words (i) lattice (ii) distributive lattice (iii) Boolean algebras with examples.
- 7. a) Prove that C(n+1, r) = C(n, r-1) + C(n, r).
 - b) From a group of 10 Professors how many ways can a committee of 5 members be formed so that at least one of Professor A and Professor B will be included?

- 8. a) Find the number of integer solutions of $x_1 + x_2 + x_3 + x_4 + x_5 = 30$ where $x_1 \ge 2, x_2 \ge 3, x_3 \ge 4, x_4 \ge 2, x_5 \ge 0$.
 - b) Find the number of ways of giving 15 identical gift boxes to 6 persons A, B, C, D, E, F in such a way that the total number of boxes given to A and B does not exceed 6
- 9. a) Solve $a_n 7a_{n-1} + 10a_{n-2} = 0$, $n \ge 2$, given $a_0 = 10$, $a_1 = 41$ using generating functions.
 - b) Solve the Recurrence Relation $a_{n+2} a_{n+1} 12a_n = 10$, $a_1 = \frac{1}{3}$, $a_0 = 0$.

- 10. a) Solve $a_n + 5a_{n-1} + 5a_{n-2} = 0$, given that $a_0 = 0$, $a_1 = 2\sqrt{5}$.
 - b) Solve $a_n 3a_{n-1} 4$ $a_{n-2} = 3^n$, given that $a_0 = 1$, $a_1 = 2$.

MR17

Code No.: 70508

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD)
Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, MAY-2019

Subject: Computer Organization
Branch: Common to CSE & IT

Time: 3 hours

PART – A

Max. Marks: 60

Answer ALL questions of the following

5x2Marks=10Marks

- 1. What is Register Transfer Language?
- 2. What is zero address instructions?
- 3. What is Micro programmed Control?
- 4. Write short note on interface.
- 5. Define parallel processing, Give an example?

PART-B

Answer ALL questions of the following

5x10 Marks=50Marks

- 1. a) How processor and memory connected each other to perform the operations in the computer, explain with a diagram?
 - b) What is the purpose of the Arithmetic Logic Shift Unit, Describe it with a diagram?

OR

- 2. a) Differentiate clearly microprocessor and microcomputer?
 - b) Describe the hardware implementation of the logic microoperations with logic diagram?
- 3. Explain the following addressing mode with suitable example.
 - a) Indirect mode
- b) Index mode
- c) Auto decrement mode
- d) Register mode

OR

- 4. What do you mean by Stack Frame? Explain how a stack frame is created & destroy during subroutine call with an example program
- 5. Explain micro programmed control unit. What are the advantages and Disadvantages of it?

OR

- 6. a) Explain the design of control unit?
 - b) Explain the memory hierarchy, specify its importance in the computer?
- 7. Explain about the input-output interface with an example

ΩR

- 8. a) Explain the asynchronous data transfer in detail.
 - b) Write a short note on Daisy-chain priority interrupt and parallel priority interrupt with their diagrams?
- 9. a) Explain the pipeline processing with suitable examples?
 - b) Explain about the RISC pipeline?

OR

- 10. a) Explain the vector processing with suitable examples?
 - b) Write short notes on SIMD array processor with their diagrams?